miRNAs cooperate in apoptosis regulation during C. elegans development.
نویسندگان
چکیده
Programmed cell death occurs in a highly reproducible manner during Caenorhabditis elegans development. We demonstrate that, during embryogenesis, miR-35 and miR-58 bantam family microRNAs (miRNAs) cooperate to prevent the precocious death of mothers of cells programmed to die by repressing the gene egl-1, which encodes a proapoptotic BH3-only protein. In addition, we present evidence that repression of egl-1 is dependent on binding sites for miR-35 and miR-58 family miRNAs within the egl-1 3' untranslated region (UTR), which affect both mRNA copy number and translation. Furthermore, using single-molecule RNA fluorescent in situ hybridization (smRNA FISH), we show that egl-1 is transcribed in the mother of a cell programmed to die and that miR-35 and miR-58 family miRNAs prevent this mother from dying by keeping the copy number of egl-1 mRNA below a critical threshold. Finally, miR-35 and miR-58 family miRNAs can also dampen the transcriptional boost of egl-1 that occurs specifically in a daughter cell that is programmed to die. We propose that miRNAs compensate for lineage-specific differences in egl-1 transcriptional activation, thus ensuring that EGL-1 activity reaches the threshold necessary to trigger death only in daughter cells that are programmed to die.
منابع مشابه
MicroRNAs in development and disease.
Since the discovery of microRNAs (miRNAs) in Caenorhabditis elegans, mounting evidence illustrates the important regulatory roles for miRNAs in various developmental, differentiation, cell proliferation, and apoptosis pathways of diverse organisms. We are just beginning to elucidate novel aspects of RNA mediated gene regulation and to understand how heavily various molecular pathways rely on mi...
متن کاملmicroRNA regulation of the embryonic hypoxic response in Caenorhabditis elegans
Layered strategies to combat hypoxia provide flexibility in dynamic oxygen environments. Here we show that multiple miRNAs are required for hypoxic survival responses during C. elegans embryogenesis. Certain miRNAs promote while others antagonize the hypoxic survival response. We found that expression of the mir-35 family is regulated by hypoxia in a HIF-1-independent manner and loss of mir-35-...
متن کاملMicroRNAs Both Promote and Antagonize Longevity in C. elegans
BACKGROUND aging is under genetic control in C. elegans, but the mechanisms of life-span regulation are not completely known. MicroRNAs (miRNAs) regulate various aspects of development and metabolism, and one miRNA has been previously implicated in life span. RESULTS here we show that multiple miRNAs change expression in C. elegans aging, including novel miRNAs, and that mutations in several ...
متن کاملA matter of timing: microRNA-controlled temporal identities in worms and flies.
The first microRNAs were identified in Caenorhabditis elegans based on their functions in the temporal regulation of stage-specific cell fate decisions. Until now, it was not known whether the so-called heterochronic genes that encode miRNAs are also involved in controlling developmental transitions in other organisms. New findings by Sokol et al. (this issue of Genes & Development, pp. 1591-15...
متن کاملChanges in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during the Shenzhou-8 mission
Radiation and microgravity exposure have been proven to induce abnormal apoptosis in microRNA (miRNA) and mRNA expression, but whether space conditions, including radiation and microgravity, activate miRNAs to regulate the apoptosis is undetermined. For that purpose, we investigated miRNome and mRNA expression in the ced-1 Caenorhabditis elegans mutant vs the wild-type, both of which underwent ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 31 2 شماره
صفحات -
تاریخ انتشار 2017